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Abstract—The Capacitated Vehicle Routing Problem with
Balanced Routes and Time Windows (CVRPBRTW) aims at
optimizing the total distance cost, the number of vehicles used,
and the route balancing subject to time windows and other
constraints. Due to the multiple and often conflicting objectives,
the proposed problem is formulated and tackled in a Multi-
Objective Optimization manner using a Hybrid Multi-Objective
Evolutionary Algorithm based on Decomposition (MOEA/D)
hybridized with a pool of local search heuristics. The application
of local search heuristics is not uniform but depends on specific
objective preferences and instance requirements. To test the
efficacy of the proposed approach, extensive experiments were
conducted on well known benchmark problem instances and
results were compared with other MOEAs.

Index Terms—multi-objective optimization, evolutionary al-
gorithms, decomposition, adaptive local search, vehicle routing
problem

I. INTRODUCTION

The Vehicle Routing Problem (VRP) refers to a family
of problems in which a set of routes for a fleet of vehicles
based at one (or several) depot(s) must be determined for
a number of geographically dispersed customers. The goal
is to deliver goods to the customers with known demands
under several objectives and constraints by originating and
terminating at a depot. The problem has received extensive
attention in the literature [1] due to its association with
important real-world problems in transportation and supply-
chain management (e.g., in parcel delivery services, school
bus routing, airline schedules and distribution planning for
wholesale retailers.)

Several versions and variations of the VRP exist that are
mainly classified based on their objectives and constraints [2].
The classic version of the Capacitated VRP (CVRP) [1],
[3] considers a collection of routes, where each vehicle is
associated with one route, each customer is visited only once
and aims at minimizing the total distance cost of a solution
using the minimum number of vehicles while ensuring that the
total demand per route does not exceed the vehicle capacity.
The extended CVRP with Balanced Routes (CVRPBR) [4]
introduces the objective of route balancing so as to increase
the fairness of the produced solution; as a motivating example
in [4], a delivery company in Taiwan is considered in which
any discrepancies in schedules might lead to drivers’ dissatis-
faction and as a possible result, reduced work efficiency. The
CVRP with time windows (CVRPTW) [5] also includes an
additional constraint which aims to improve customer satis-
faction with regard to delivery times: each customer should
be served within a specific time window.

CVRP and its variants are proven NP-hard [6]. Optimal
solutions for small instances can be obtained using exact
methods [2], but the computation time increases exponentially
for larger instances. Thus, several heuristic and optimization
methods [1] are proposed. More recently, metaheuristic ap-
proaches are used to tackle harder CVRP instances including
Genetic Algorithms [7] and hybrid approaches [3]. Hybrid
approaches, which often include combinations of different
heuristic and metaheuristic methods such as the hybridization
of Evolutionary Algorithms (EAs) with local search (aka
Hybrid or Memetic Algorithms), have been more effective in
dealing with hard scheduling and routing problems [3] than
conventional approaches in the past.

When real-life cases are considered, it is common to
examine the problem under multiple objectives as decision
makers rarely take decisions examining objectives in isola-
tion. Therefore, proposed solutions often attack the various
objectives in a single run. This can be done by tackling the
objectives individually and sequentially [4], or by optimizing
one objective while constraining the others [8] or by aggre-
gating all objectives into one single objective function [9]
usually via a weighted summation. Such approaches often
lose “better” solutions, as objectives often conflict with each
other and the trade-off can only be assessed by the decision
maker. Therefore, the context of Multi-Objective Optimization
(MOO) is much more suited for such problems.

A Multi-objective Optimization Problem (MOP) [10] can be
mathematically formulated as follows:

min F (x) = (f1(x), . . . , fm(x))T , subject to x ∈ Ω (1)

where Ω is the decision space and x ∈ Ω is a decision vector.
F (x) consists of m objective functions fi : Ω → ℜ, i =
1, . . . ,m, and ℜm is the objective space.

The objectives in (1) often conflict with each other and an
improvement on one objective may lead to the deterioration
of another. In that case, the best trade-off solutions, called the
set of Pareto optimal (or non-dominated) solutions, is often
required. The Pareto optimality concept is formally defined
as,

Definition 1. A vector u = (u1, . . . , um)T is said to dominate
another vector v = (v1, . . . , vm)T , denoted as u ≺ v, iff ∀i ∈
{1, . . . ,m}, ui ≤ vi and u ̸= v.

Definition 2. A feasible solution x∗ ∈ Ω of problem (1) is
called Pareto optimal solution, iff ̸ ∃y ∈ Ω such that F (y) ≺
F (x∗). The set of all Pareto optimal solutions is called the
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Pareto Set (PS) and the image of the PS in the objective space
is called the Pareto Front (PF).

Multi-Objective Evolutionary Algorithms (MOEAs) [11],
[12] are proven efficient and effective in dealing with MOPs.
This is due to their population-based nature that allows them
to obtain a well-diversified approximation of the PF. That is,
minimize the distance between the generated solutions and the
true PF as well as maximize the diversity (i.e., the coverage
of the PF in the objective space). In order to do that, MOEAs
are often combined with various niching mechanisms such as
crowding distance estimation [13] to improve diversity, and/or
local search methods [14] to improve convergence.

In the literature, there are several studies that utilized
generic or hybrid Pareto-dominance based MOEAs to tackle
Multi-Objective CVRPs and variants [15]. For example, Joze-
fowiez et al. [16] proposed a bi-objective CVRPBR with
the goal to optimize both the total route length and routes
balancing. In [17], the authors proposed a hybridization of
a conventional MOEA with multiple Local Search (LS) ap-
proaches that were selected randomly every 50 generations
to locally optimize each individual in the population and
tackle a bi-objective CVRPTW. In [18], Geiger tackled several
variations of the CVRPTW by optimizing pairs of the different
objectives. Over the past decade numerous variants of the
investigated problem were addressed under a MOP setting,
involving different combinations of objectives and different
search hybridization elements. For the interested reader, in-
dicative examples include [19] and [20].

Even though the objectives and constraints presented are all
important, challenging, and by nature conflicting with each
other, to the best of our knowledge no research work has
ever dealt with the minimization of the total distance cost,
the number of vehicles and the route balancing objectives
as a MOP trying to satisfy all side-constraints of the CVRP,
CVRPTW and CVRPBR, simultaneously. For the remainder
of this article we will refer to this MOP as the CVRPBRTW
(CVRP with Balanced Routes and Time Windows.)

Moreover in all the above studies, MOEAs based on Pareto
Dominance (such as NSGA-II [13]) are hybridized either with
a single local search approach [19], [20] or with multiple local
search heuristics with one being selected randomly [17] each
time a solution was about to be optimized locally.

In this paper, CVRPBRTW is investigated and formulated
as a MOP composed of three objectives (minimize the total
distance cost, minimize the number of vehicles and balance the
routes of the vehicles) and all relevant constraints aiming at
increasing its practical impact by making it closer to real-life
cases. Solutions are obtained through a hybrid Multi-Objective
Evolutionary Algorithm based on decomposition (MOEA/D)
[21]. In this approach, the proposed MOP is decomposed into a
set of scalar subproblems, which are solved simultaneously us-
ing neighborhood information and local search methods each
time a new solution is generated. In particular, the MOEA/D
is hybridized with multiple local search heuristics that are
adaptively selected and locally applied to a subproblem’s
solution based on specific objective preferences and instant
requirements. We test our proposition on all 56 Solomon’s
benchmark problem instances [5] against other MOEA/Ds.

This work is an extension of our preliminary work in [22],
in which common local search (LS) heuristics [23] were
employed (Double Shift, Lambda Interchange and Shortest
Path) and combined with MOEA/D. Through extensive ex-
perimentation on random solution instances we established an
affinity of each LS heuristic with an objective function and
adopted an association between objectives and LS heuristics.

In this work, we are able to obtain improved results by
replacing the above pool of LS heuristics with three newly
designed ones, having the property that each one displays
preference towards a different objective. We have extended
our experimental studies in two directions. Firstly, in order
to improve the accuracy of our findings, we evaluated the
proposed MOEA/D-aLS approach for all 56 Solomon test
instances with respect to both the conventional MOEA/D
and the MOEA/D-rLS and secondly we justified the use of
the main parameters settings via thorough parameter control
experiments.

Major contributions of this paper include the following:
• Define and formulate as MOP a Tri-Objective Capacitated

Vehicle Routing Problem with Balanced Routes and Time
Windows (CVRPBRTW).

• Propose a Multi-Objective Evolutionary Algorithm based
on Decomposition hybridized with an adaptive local
search mechanism (MOEA/D-aLS). An important ele-
ment of the proposed method is the way the newly
designed LS heuristics are selected for application each
time a new solution is generated: this is done based on
a weighted probability, which depends on the objective
weights of each subproblem.

• Results show that the MOEA/D-aLS consistently im-
proves the performance of the conventional MOEA/D and
MOEA/D-rLS (MOEA/D with random application of LS
heuristics).

The rest of the paper is organized as follows. Related
work on variants of the Capacitated Vehicle Routing Prob-
lem and Multi-Objective Evolutionary algorithms employed
to solve such problems are presented next. The proposed
Multi-Objective problem definition and formulation, namely
CVRPBRTW, is described in Section III. The general frame-
work of the Multi-Objective Evolutionary Algorithm based
on Decomposition (MOEA/D) [21] is introduced in Section
IV. In Section V, an MOEA/D approach, combined with
an adaptive strategy of applying local search heuristics is
presented for tackling the proposed problem. In Section VI,
the performance of the proposed method is evaluated on the
well studied Solomon’s benchmark problem instances [5] and
compared against other MOEA/D variants. Finally, Section VII
concludes the paper and provides insights for possible future
directions.

II. RELATED WORK

In this section, we introduce and discuss the most prominent
and relevant research work on CVRP and MOO.

A. Capacitated Vehicle Routing Problem (CVRP) & variants
In the literature, several studies tried to extend classic VRPs

to improve their practical applications [4], [24], [16], to gen-
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eralize them [25], [18], [19] and to study real-life cases [26],
[23], [27]. In order to do that multiple objectives are often
identified, mainly from various Single Objective Optimization
(SOO) variants, and tackled at the same time. For example,
Lee and Ueng [4] developed an integer linear programming
model of the CVRPBR to firstly minimize the total distance
and secondly balance the workload among employees by
using a hybrid GA. Ombuki et al. [9] tackled the number of
vehicles and total distance cost objectives of the CVRPTW
by aggregating them into a single objective function using
the weighted sum approach. Furthermore, Chand et al. [28]
tackled the traditional CVRP by aggregating the number of
vehicles and distance cost minimization objectives into a
single objective function. In 2010, Kritikos and Ioannou [29]
formulated a challenging multi-objective CVRPTW including
three objectives, i.e., the distance cost, the number of vehicles
and the routes balance, which were tackled as an aggregated
single objective function using the weighted sum approach.
Similarly, Chen and Chen [8] proposed a similar MOP but
instead of aggregating the objective functions using weights,
the authors tackled the distance cost objective individually and
constrained the number of vehicles as well as the balancing
objectives to some pre-defined values.

Other variants of the CVRP include the Multiple Depots
VRP (MDVRP) [30] that aims at initially assigning customers
to depots and a fleet of vehicles is based at each depot.
Each vehicle originates from one depot, service the customers
assigned to that depot, and return to the same depot. The
Periodic VRP (PVRP) [31], [32] that is generalized by ex-
tending the planning period from a single day to several days.
Split Delivery VRP (SDVRP) relaxes the original VRP by
allowing customers to be served by different vehicles if the
overall cost is reduced. The VRP with Pick-ups and Deliveries
(VRPPD) [33] that includes pick-ups in addition to deliveries
during the route, therefore a solution should also consider the
possibility that the customers may also return some goods
and try to fit them in the vehicles. The VRP with Backhauls
(VRPB) [34] is similar to VRPPD with the main difference
that in VRPB all deliveries of goods must be completed before
any pick-ups are made. Effectual surveys that include several
variants as well as the methodologies used to tackle them can
be found in [2] and [35].

B. CVRP & Multi-Objective Optimization (MOO)

It is important to note that all previously mentioned stud-
ies consider the multiple objectives individually and sequen-
tially [4], or by optimizing one and constraining the others [8]
or by aggregating all objectives into one single objective
function [9], [28], [29]. This often results in losing “better”
solutions, since multiple objectives often conflict with each
other and an optimal trade-off is required by the decision
maker. Some research studies dealt with a CVRP and its
variants from a MOO point of view and focused at obtaining
a set of near-optimal solutions. For example in [24], the
authors used an ant colony optimization technique to tackle
a Dynamic CVRP aiming at minimizing the total mean transit
time and total variance in transit time. Similarly, Murata and

Fig. 1. The Capacitated Vehicle Routing Problem (CVRP)

Itai [36] defined a MOO CVRP that aimed at minimizing
both the number of vehicles and the maximum routing time of
those vehicles. Jozefowiez et al. [16] proposed a bi-objective
CVRPBR with the goal to optimize both the total route length
and routes balancing. Hong and Park [25] formulated a bi-
objective CVRPTW having as major goal to minimize the
total route transit time and the total customer waiting time.
In [18], Geiger tackled several variations of the CVRPTW
by optimizing pairs of the following objectives: minimize the
distance cost, minimize the travel time, minimize the number
of vehicles and maximize the service, i.e., minimize the time
windows violations. Furthermore, Baran and Schaerer [26]
tackled a tri-objective optimization CVRPTW dealing with
minimizing the number of vehicles, the total travel time and
the total delivery time. Similarly, Tan et al. [19] tackled a
tri-objective CVRP including minimizing the travel distance,
the driver remuneration (i.e., the driver’s cost per hour) and
the number of vehicles. Recently in 2011, Najera and Bul-
linaria [37] tackled a multi-objective CVRPTW by tackling
the number of vehicles, total travel distance and total travel
time objectives, simultaneously. Please refer to Jozefowiez et
al. [15] for a detailed survey on Multi-Objective VRPs. Even
though the objectives and constraints of the CVRP, CVRPTW
and CVRPBR are all important, challenging and by nature
conflicting with each other, no research work has ever dealt
with them simultaneously.

III. MULTI-OBJECTIVE PROBLEM DEFINITION AND
FORMULATION

The elementary version of the CVRP [1], [3] is often mod-
elled as a complete graph G(V,E), where the set of vertices V
is composed of a unique depot u0 = o and l distinct customers
{u1, . . . , ul}, with customer ui based at location (xi, yi) and
the Euclidean distance dist(ui, uj) between customers ui and
uj associated with each edge (ui, uj) ∈ E. Each customer
ui ∈ V must be served a quantity qi (also known as customer’s
demand) of goods that requires a pre-defined service time tsi .
We denote by tai the arrival time at customer ui, assuming that
unit distance is traversed in unit time and that time is measured
as time elapsed from commencing operations. To deliver those
goods, K identical (i.e., of same type, capacity etc.) vehicles
are available, which are associated with a maximal capacity c
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Fig. 2. The CVRP with Balanced Routes (CVRPBR)

of goods that they can transport. A solution of the CVRP is a
collection of routes X = {R1, ..., Rk}, where each route Rm

is a sequence of vertices starting and ending at depot o and
served by a single vehicle, each customer ui is visited only
once and the total amount of goods transported per route is
at most c. The CVRP aims at a minimal total distance cost
D(X) of a solution, using minimum number of vehicles k.

In Figure 1, the customers ui are indicated with empty
circles; the required quantity demands qi are shown just next to
them. Four independent routes are denoted with different types
of lines, with the distance cost between customers covered by
each vehicle shown in the middle of each edge.

The CVRP with Balanced Routes (CVRPBR) [4] extends
the elementary CVRP by introducing the objective of routes
balancing in order to bring an element of fairness into the
solutions. The CVRPBR aims at also minimizing the routes
balancing objective B(X) which we define as the difference
between the maximum distance traveled by a vehicle and the
mean distance travelled by all vehicles in X .

In Figure 2, two balanced routes are shown on the right
hand side of the figure, denoted with different types of lines. In
this example, the distance covered by corresponding vehicles
associated to each route is the same and sums up to 279m.

The CVRP with time windows (CVRPTW) [5] does not
include any additional objective, but it involves an additional
‘time windows’ constraint: the vehicle serving each customer
ui should arrive within specific time windows [ei, e

′
i]. In

particular, the depot is also associated with a time window
[e0, e

′
0], which constrains the total travel time of a vehicle

from departure to arrival. Note that in the problem variant
investigated here, if a vehicle arrives at a customer ui before
the earliest allowed arrival time ei, it is allowed to wait until
that time is reached, resulting in additional route travelled time.
Time windows are treated as a hard constraint in the sense that
if the vehicle arrives at a customer ui after the latest allowed
arrival time e′i, then the solution is considered infeasible.

In Figure 3, each customer is associated with a time window
indicated by a rectangle next to it. With each rectangle two
integer numbers representing the lower and upper bounds of
the time window are shown. The vertical line in the rectangle

Fig. 3. The CVRP with Time Windows (CVRPTW)

indicates a feasible visit (arrival time) of the vehicle at the
customer en route.

The proposed CVRP with Balanced Routes and Time Win-
dows (CVRPBRTW) aims at optimizing all required objectives
and satisfying all constraints without violating the time win-
dows; mathematically it can be formulated as follows:
Given:

• V = set of vertices composed of a depot o = u0 and cus-
tomers ui located at coordinates (xi, yi) for i = 1, ..., l.

• E = set of edges (ui, uj) for each pair of vertices ui, uj ∈
V associated with their Euclidean distance dist(ui, uj).

• [ei, e
′
i] = time window of customer ui,∀i ∈ {0, ..., l}.

• qi = quantity demand of customer ui, ∀i ∈ {1, ..., l};
q0 = 0.

• tsi = service time of customer ui, ∀i ∈ {0, ..., l}; ts0 = 0.
• K = max number of vehicles to be utilized (at most l).
• c = capacity of each vehicle.
• Rm = route followed by the mth vehicle used in the

solution. The route is defined as a sequence of customer
vertices (excluding the depot vertex).

• X = a collection of k routes X = {R1, R2, ..., Rk} where
k is at most K.

• suc(u) = the vertex immediately following u in Rm, for
some customer u ∈ Rm, if it exists (i.e., u is not the last
vertex in Rm), otherwise the depot o.

• pre(u) = the vertex immediately preceding u in Rm, for
some customer u ∈ Rm, if it exists (i.e., u is not the first
vertex in Rm), otherwise the depot o.

• init(Rm) = the initial vertex in Rm.
• tai = the vehicle arrival time at vertex ui, ∀i ∈ {1, ..., l};

taking ta0 = 0 and assuming 1-1 correspondence between
distance and time units, this can be calculated by the
function

max{ei, taip + tsip + dist
(
uip , ui

)
},

where uip = pre(ui) denotes the vertex preceding
customer ui in its route.

Let Dm(X) denote the total distance covered by vehicle
serving route Rm in solution X:

Dm(X) = dist(o, init(Rm)) +
∑

∀u∈Rm

dist
(
u, suc(u)

)



5

Problem Objectives

min F (X) = (N(X), D(X), B(X)) (2)

where,

N(X) = k +

(
min

1≤m≤k

(
|Rm|
l

))
(3)

D(X) =
k∑

m=1

Dm(X) (4)

B(X) =

(
max

1≤m≤k
{Dm(X)}

)
− 1

k
D(X) (5)

subject to ∑
∀ui∈Rm

qi ≤ c, ∀m ∈ {1, ...k} (6)

ei ≤ tai ≤ e′i, ∀i ∈ {1, ...l} (7)

{ui} ∩
∪

m=1,...,k

Rm = {ui}, ∀i ∈ {1, ...l} (8)∑
m=1,...,k

|Rm| = l (9)

Equation (2) specifies the multi-objective function we wish
to minimize, comprising the total distance cost, defined in (4),
route balancing, defined in (5), and the number of routes, thus
vehicles, used, k = |X|. Note that instead of |X|, the auxiliary
function N(X) defined in (3) is used, as it gives a bias towards
solutions with the least customers in the smallest route.

Constraints (6) ensure that the total quantity of goods
transported in a route does not exceed the capacity of the
vehicle, whereas constraints (7) require that the arrival time
at all customers is within their corresponding time window.
Constraints (8) ensure that each customer vertex is visited by
at least one route, and constraint (9) that the total number
of vertices visited is equal to the number of customers. The
combination of constraints (8) and (9) guarantee that all
customers are served exactly once.

IV. BACKGROUND: THE MOEA/D FRAMEWORK

In this section, the Multi-Objective Evolutionary Algorithm
based on Decomposition (MOEA/D) [21] general framework
is initially introduced in Algorithm 1. Then the MOEA/D’s
major steps are described and the conventional operators
proposed in [21] are introduced.

MOEA/D requires some pre-processing steps before initi-
ating the main part of the algorithm. These steps are briefly
summarized and discussed next. The encoding representation
is often problem specific and will be discussed in the following
section.
Decomposition: In MOEA/D, the original MOP needs to be
decomposed into a number of M scalar subproblems. Any
mathematical aggregation approach can serve for this purpose.
In this article, the Tchebycheff approach is employed as
originally proposed in [21].

Let F (x) = (f1, ..., fm) be the objective vector,
{w1, ..., wm} a set of evenly spread weight vectors which
remain fixed for each subproblem for the whole evolution,

Algorithm 1 MOEA based on Decomposition
Input:
• a MOP (e.g., CVRPRBTW in Section III);
• M : population size and number of decomposed subproblems;
• T : neighborhood size of each subproblem;
• uniform spread of weight vectors (w1, ..., wM );
• the maximum number of generations, γm;
• the tournament size, τ ;
• the crossover and mutation rates, cr,mr;
Output: the external population, EP .
Step 0-Pre-processing:

Decomposition: Decompose the original multi-
objective CVRPRBTW into a set of M single-
objective CVRPBRTW subproblems {g1, ..., gM} hav-
ing weights (w1, ..., wM );
Neighborhoods: Compute the Euclidean distance be-
tween each pair of weight vectors. Then set a neigh-
borhood N i for each gi that includes the T closest
weight vectors of wi.
Setup:Set EP := ∅; γ := 0; IPγ := ∅;

Step 1-Initialization: Uniformly randomly generate and evalu-
ate an initial internal population IP0 = {X1, · · · , XM};
Step 2:For i = 1, . . . M do

Step 2.1-Genetic Operators: Generate a new solution
Y i using the genetic operators.
Step 2.2 (Optional)-Local Search: Apply a local
search heuristic on Y i to produce Zi.
Step 2.3-Update: Update z∗ and use Zi to update
IPγ , EP and the neighborhood N i of the T closest
neighbor solutions of Zi.

Step 3-Stopping criterion: If stopping criterion is satisfied,
i.e., γ = γm, then stop and output EP , otherwise γ = γ + 1,
go to Step 2.

and z∗ the reference point. Then, the objective function of a
subproblem i is stated as:

gi(Xi|wi, z∗) = min{
m∑
j=1

(wi
j f̂j(X)− z∗j )}

where wi = (wi
1, ..., w

i
m) represents the objective weight

vector for the specific decomposed problem i with each
wi

j ∈ [0, 1], f̂ denotes the min-max normalization of f and
z∗ = (z1, ..., zm) is a vector equal to all best values zj
found so far for each objective fj . MOEA/D minimizes all
these objective functions simultaneously in a single run. As
stated in [21], one of the major contributions of MOEA/D
is that the optimal solution of subproblem i should be close
to that of k if wi and wk are close to each other in the
weight space. Therefore, any information about these gk’s with
weight vectors close to wi should be helpful for optimizing
gi(Xi|wi, z∗). This observation will be later utilized for
improving the efficiency and the adaptiveness of the newly
proposed local search heuristic.
Neighborhoods T: In MOEA/D, a neighborhood N i is main-
tained for each subproblem i of weight vector wi. Particularly,
N i is composed of the T subproblems of which the weight
vectors are closest to wi, including i itself. T is a parameter
of the algorithm. The Euclidean distance is used to measure
the closeness between two weight vectors.
Main part of MOEA/D: In the main part of the MOEA/D
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framework, an initial population of size M is uniformly
randomly generated. Then the genetic operators are iteratively
utilized M times for generating the new and evolved popula-
tion. In [21], for generating a new solution Y a tournament
selection is used for selecting two parent solutions and then
a two-point crossover generated an offspring solution that is
then modified using a random mutation operator. The newly
generated solution Y can be further locally optimized by using
any local search heuristic to generated solution Z. Note that
the latter step is optional in the original MOEA/D framework.

Update of populations and Termination
Finally, the Internal Population (IPγ) that keeps the best
solutions found so far for each subproblem, the external
population (EP) that keeps the non-dominated solutions and
the neighborhood T of each subproblem gi are updated using
the constructed solutions Zi as follows:

1 The (IPγ) update phase:
Firstly, solution Zi replace the incumbent solution Xi for
subproblem i iff it achieves a better value for the specific
objective function of that subproblem; in other words,
if gi(Zi|wi, z∗) < gi(Xi|wi, z∗) then IPγ ∪ {Zi} and
IPγ \ {Xi}, otherwise Xi is not replaced in IPγ .

2 The neighborhood T update phase:
Subsequently, in an attempt to propagate good character-
istics, Zi is evaluated against the incumbent solutions
Xjs of the T closest neighbors of i; in other words,
for all T closest neighbor solutions Xj ∈ IPγ , and for
j = 1, . . . , T , if gj(Zi|wj , z∗) < gj(Xj |wj , z∗) then,
IPγ∪{Zi} and IPγ\{Xj}, otherwise, Xj is not replaced
in IPγ .

3 The (EP ) update phase:
Finally, a test is made to check whether Zi is dominated
by any solution in the maintained Pareto Front, and if not,
it is added to PF; in other words, if there is no solution
Xj ∈ EP such that Xj ≺ Zi then EP = EP∪{Zi} and
for any Xj ∈ EP , if Zi ≺ Xj then EP = EP \ {Xj}.

Termination Criterion: At the end of each iteration if the
maximum number of generations γm is reached, the search
terminates.

V. THE PROPOSED HYBRID MOEA/D-ALS

In this section, the proposed algorithm, namely MOEA/D-
aLS - a hybridized MOEA/D with an adaptive local search
mechanism, is described. Our proposed method follows the
general MOEA/D framework described in Algorithm 1 that is
carefully customized and extended for efficiently tackling the
proposed MOP.

A. Main steps of proposed MOEA/D-aLS approach

Further details on the various steps of the proposed algo-
rithm and the major differences with the general algorithm
proposed in [21] are provided below.
Step 0: Pre-processing
Encoding Representation: In VRP, solutions are often rep-
resented by a variable length vector of size greater than l,

which consist of all l customers exactly once and the depot,
o, one or more times signifying when each vehicle starts and
ends its route. Under such a representation, the solution’s
phenotype (the suggested routes) can readily be obtained,
although several issues of infeasibility arise. In this work
however, a candidate solution X is a fixed length vector of size
l, composed of all customers only. This solution encoding X is
translated to the actual solution using the following algorithm.
An empty route R1 is initially created. The customers are
inserted in R1 one by one in the same order as they appear in
solution X . A customer uj that violates any of the constraints
of Section III is directly inserted in a newly created route R2.
In the case where more than one route is available, and for
the remaining customers, a competitive process starts, in which
the next customer uj+1 in X is allowed to be inserted in any
available route that does not violate a constraint. When more
than one such routes exist, the one with the shortest distance
to the last customer en route is preferred. If a customer
violates a constraint in all available routes, a newly created
route is initiated. Note that this process guarantees feasibility
irrespective of the actual sequence.

Fig. 4. Encoding Representation

Figure 4 illustrates an example of a CVRP instance with
l = 10 customers and a candidate solution X . Before eval-
uation, solution X is used to create some feasible routes as
explained above. In Case #1 of this example, customer u1 = 2
will be served first as it appears first in X . Therefore, empty
route R1 is created and customer 2 is inserted. Then, we
assume that customer 3, which follows, satisfies all constraints
(denoted as bold tick in Figure 4) and it is inserted in R1

after customer 2. Customer 1, however, does not satisfy the
constraints when added after customer 3 in R1 (denoted as
bold X in Figure 4) and therefore, a new route R2 is created
to serve customer 1. In Case #2, it is assumed that customer
4 satisfies the constraints of both routes R1 and R2 and it
is inserted in R2 since customer 1 of route R2 is closer to
customer 4, compared to customer 3 of R1. Finally in Case #3,
it is assumed that customer 8 does not satisfy the constraints
neither when it is inserted after customer 4 of R2, nor when it
is inserted after customer 3 of R1. Therefore, a new route R3

is created to serve customer 8. This continues until customers
6, 10, 5, 7 and 9 are all served and every vehicle returns back
to depot o. The topology on the right-hand side of the figure
illustrates the solution from a CVRP point of view.
Decomposition and Neighborhoods T: In this article, the
Tchebycheff approach is employed and the neighborhoods are
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calculated as originally proposed in [21] and explained in
Section IV.
Step 1: Initialization
An initial population IP0 = {X1, ..., XM} is created, named
Internal Population of generation γ = 0. The initialization
process is random and the feasibility of the candidate solutions
is maintained as discussed earlier in the pre-processing step.
Each time a solution Xi is created, it is added in IP0. The
process continues until M solutions are created, one for each
subproblem gi.
Step 2.1: Genetic Operation
At each step of MOEA/D, a new solution Xi is generated for
each subproblem i using the genetic operators (i.e., selection,
crossover, mutation) as follows.
Selection: In this paper, a Neighborhood Tournament Selection
(NTS) operator [38] is used for selecting two parent solutions,
Pr1, P r2 for each subproblem gi from population IP γ and
forward them to the crossover operator for recombination. The
NTS operator works as follows: the first parent solution Pr1 is
always selected to be the best known solution Xi found so far
for subproblem gi. Then, a tournament is created by uniformly
randomly selecting τ neighbor solutions from neighborhood
N i, where τ ≤ T . The second parent Pr2 is selected to be the
neighbor solution Pr ∈ N i with the best gi(Pr|wi, z∗). Then,
the two parent solutions, Pr1 and Pr2 are forwarded to the
crossover operator for recombination. The insight behind the
Neighborhood Tournament Selection operator is that neighbor
solutions of subproblem i in the weight space is more likely to
have good information for optimizing gi as discussed earlier
in this section.
Crossover: The two parent solutions Pr1 and Pr2 are then

Fig. 5. The Partially Mapped Crossover (PMX)

recombined with a probability rate cr using the well-known
Partially Mapped Crossover (PMX) operator, originally pro-
posed by Goldberg and Lingle in [39], to produce an offspring
solution O. The PMX works as follows: First, two random
cut points are uniformly randomly selected along Pr1. The
indexes falling between the cut points are called the mapping
sections. For example, in Figure 5, let’s assume that the two
parent solutions Pr1 and Pr2 are of l = 10 customers length,

the two cut point are denoted with bold Xs and the mapping
section is composed by 4-2,5-8,6-7. Now the mapping section
of the first parent Pr1 is copied into the second offspring O2

and the mapping section of the second parent Pr2 is copied
into the first offspring O1. Then offspring O1 is filled up by
copying the elements of Pr1 and O2 by Pr2 . In the case
that an index appears in an offspring twice, then it is replaced
according to the mapping. For example, the second element
of O1 was 2 that is already copied in O1 from Pr2. Hence,
because of the mapping 4-2 we set the second element of O1 to
be 4. The first, third, ninth and tenth elements of O1 are taken
from Pr1 and the remaining are filled up from the mapping
as well. Therefore, O1=(1,4,3,2,8,7,6,5,9,10) and similarly
O2=(2,3,1,4,5,6,10,8,7,9). Then, O = O1 if gi(O1|wi, z∗) <
gi(O2|wi, z∗) and O = O2 otherwise. Finally, the offspring
solution O is forwarded to the mutation operator to be slightly
modified.
Mutation: A random swap mutation operator is utilized to
modify each element of solution O with a mutation rate mr

and generate solution Y i as in [1]. Particularly, a customer
uj is mutated by swapping its position with another customer
uz at position z in O. If either uj or uz cannot be feasibly
swapped the offspring O is not changed.
Step 2.2: Local Search
In the local search step of MOEA/D in Algorithm 1, the gener-
ated solution Y i for a given subproblem is locally improved by
using a problem specific local search heuristic [40] to generate
solution Zi. Note that in the original MOEA/D scheme, the
local search step was introduced as optional and has not been
utilized by the authors in [21].

In this paper, the local search step is utilized in various ways
as described next. The improved solution Zi is finally used to
update the populations; note that in the case when the local
search step is not utilized, we set Zi = Y i. The LS heuristic
used at each subproblem and at each iteration, is selected from
the following pool of LS heuristics; the following three LS
heuristics were designed so that each one exhibits preference
in a different objective (number of vehicles, total distance and
balancing, respectively).

1) LS favouring Number of Vehicles (LSV ):
WHILE constraints are satisfied for each solution Y i

REPEAT at most a pre-defined number NLS of iterations
• Find route RMinCust with least number of cus-

tomers (break ties using least amount of vehicles’
used capacity).

• Pick randomly any customer u from this route.
• Pick randomly any other route RV and try to move

chosen customer u to this route provided:
- no constraints are violated, and
- number of customers in route RV is at least a
given threshold γV , set equal to

MinSize+ (AvgSize−MinSize) ∗ tolV ,
where AvgSize and MinSize are the average
and minimum number of customers in constructed
routes, respectively, and tolV a given tolerance
value.

2) LS favouring Total Distance (LSD):
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WHILE constraints are satisfied for each solution Y i

REPEAT a pre-defined number NLS of iterations
• Find randomly a customer u in the sequence of cus-

tomers u1, ..., ul and with a given probability tolD
select this customer or not. If customer u is selected
then check if u is in the worst position, meaning
that the sum dist(pre(u), u) + dist(u, suc(u) of
distances from its two neighbouring customers in
the route containing u is the largest found so far.

• Given u, find its closest neighbour v among the set
of all customers and try to add u in the route RD

containing v (first try inserting u before v and if any
constraints are violated then try after v), provided no
constraints are violated. In case some constraints are
violated, the next closest neighbour of u is selected.

3) LS favouring Balancing (LSB):
WHILE constraints are satisfied for each solution Y i

REPEAT a pre-defined number NLS of iterations
• Find route RMaxDist with maximum total distance

(break ties using least amount of vehicles’ used
capacity).

• Pick randomly any customer u from this route.
• Pick randomly any other route RB and try to move

chosen customer to this route provided:
- no constraints are violated, and
- number of customers in route RB is at most a
given threshold γB , set equal to

MaxDist− (MaxDist−AvgDist) ∗ tolB,
where MaxDist and AvgDist are the maximum
and average route distance in constructed routes,
respectively, and tolB a given tolerance value.

It is noted that the parameters tolV , tolD and tolB employed
in the LS heuristics above might be allowed to take different
values according to the stage of execution of the algorithm
(number of generations) so as to facilitate search diversity
and/or exhaustiveness.
Steps 2.3 and 3: Update of populations and Termination
The Internal Population (IPγ), the external population (EP)
and the neighborhood T of each subproblem gi are updated
as explained in Section IV. The proposed MOEA/D-aLS
terminates after a maximum number of generations γm.

B. Adaptive strategy for LS heuristics

A central aspect of the proposed MOEA/D-aLS (Multi-
Objective Evolutionary Algorithm based on Decomposition
hybridized with an adaptive local search mechanism) is the
way the LS heuristics are selected for application each time a
new solution is generated: this is done based on a weighted
probability which depends on the objective weights each
subproblem holds. As a result this probability is not static
among subproblems. In the proposed aLS heuristic, a local
search approach is probabilistically selected and applied to a
solution based on each subproblem’s weight vector that shows
its objective preference and a uniformly randomly generated
number. The adaptive LS strategy was designed to assign
higher probability to all subproblems i that favor the number

of vehicles objective (i.e., high w1
i ) to be locally optimized

with LSV , those that favor the total distance cost objective
(i.e., high w2

i ) with LSD and those that favor the balancing
objective (i.e., high w3

i ), with LSB . Note that this approach
cannot be utilized by any non-decompositional MOEA.

The aLS proceeds as follows:
For each subproblem gi with a weight vector
(wi

1, w
i
2, w

i
3) and generated solution Y i do:

Uniformly randomly generate number rand ∈ [0, 1].
If 0 <= rand <= wi

1 then apply LSV on Y i to
obtain Zi.
else if wi

1 < rand <= (wi
1 + wi

2) then apply LSD

on Y i to obtain Zi

else apply LSB on Y i to obtain Zi.

VI. EXPERIMENTAL STUDIES

This section introduces our experimental setup by briefly
explaining the Solomon’s test instances and the performance
metrics used in our experimental studies to evaluate the
performance of the MOEA/D variants, followed by a series
of experiments.

A. Experimental Setup

The experiments were carried out on the well-known
Solomon’s instances (100-customer problem sets). These in-
stances are categorized into six classes: C1, C2, R1, R2, RC1
and RC2. Category C problems represent clustered data, which
means the customers are clustered either geographically or in
terms of the time windows. Category R problems represent
uniformly randomly distributed data and RC are combinations
of the other two classes. Classes R1, C1 and RC1 have a
short scheduling horizon and allow only a few customers per
route (approximately 5 to 10). In contrast, the sets R2, C2
and RC2 have a long scheduling horizon permitting many
customers (more than 30) to be serviced by the same vehicle.
In this paper, we examined the entire Solomon dataset that is
composed of 56 test instances.

The common algorithmic settings used are as follows:
cr = 0.9,mr = 0.01, T = 5, τ = 30,M = 630 and
gm = 5000. In addition, for the hybrid MOEA/Ds, the
following parameters for the Local Search step were set:
NLS = 50, tolD = 0.5, tolV , and tolB increase from 0
to 0.8 by 0.2 every 500 generations and then remain fixed.
The values of the algorithmic parameters were selected after
running several control experiments summarized in Table I
for test instance C101. The results are introduced next in
Experimental Series 1 of Subsection VI-C.

B. Performance Measures

The performance of an MOEA is usually evaluated from
two perspectives: the obtained non-dominated set should be
(i) as close to the true Pareto Front (PF) as possible, and (ii)
distributed as diversely and uniformly as possible. No single
metric can reflect both of these aspects and often a number
of metrics are used [41]. In this study, we use the Coverage
C [41] and distance from reference set ID [42] metrics:
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C(A,B) =
|{x ∈ B|∃y ∈ A : y ≺ x}|

|B|
,

ID(A) =

∑
y∈R{minx∈A{d(x, y)}}

|R|
.

Coverage is a commonly used metric for comparing two
sets of non-dominated solutions A and B. The C(A,B) metric
calculates the ratio of solutions in B dominated by solutions
in A, divided by the total number of solutions in B. Therefore,
C(A,B) = 1 means that all solutions in B are dominated by
the solutions in A. Note that C(A,B) ̸= 1− C(B,A).

The distance ID from the reference set is defined by
Czyzzak et al. in [42]. This shows the average distance from
a solution in the reference set R to the closest solution in A.
The smaller the value of ID(A), the closer the set A is to R.
In the absence of the real reference set (i.e., Pareto Front), we
calculate the average distance of each single point to the nadir
point since we consider minimization objectives.

C. Experimental Results

In this section, we initially provide some control exper-
iments to discuss the sensitivity of the proposed approach
with respect to its major algorithmic parameters. Then the
proposed MOEA/D-aLS (M-aLS) is evaluated with respect
to the conventional MOEA/D as proposed by Zhang and Li
in [21] and a MOEA/D with a random local search (M-rLS)
selection mechanism. The MOEA/D variants are compared
both visually, as well as, in terms of the performance metrics
of subsection VI-B. Note that in all experimental studies we
used the same number of function evaluations for fairness.
Experimental Series 1 - Control Experiments:

In this experimental series, we have examined the sensitivity
of the major algorithmic parameters with respect to the conver-
gence of each objective function. In each control experiment,
summarized in Table I, we vary one algorithmic parameter and
we keep the rest of the parameters fixed. For the remaining
experimental series, we have used the algorithmic settings of
CEx1-Instance 6 (Table I), as already stated in subsection VI-A
and explained next.

In Figure 6, we examined the best values of each objective
function for each instance of CEx1 that varies the γm pa-
rameter. The results show that all objective functions sharply
converge towards zero for the first 500 generations. The
convergence becomes smoother for the next 3000 generations,
while it stops for both distance and # of vehicles objective
functions after around 3500 generations. The balancing ob-
jective keeps converging until the maximum number of 5000
generations, showing that a large number of generations would
be preferable. This is due to the fact that the evolutionary
algorithm requires a large number of function evaluations in
order to find the near-optimum solutions of the proposed MOP
since the objective space is large and multi-dimensional.

Figure 7 illustrates the experimental results of control
experiment CEx2 of Table I in which the population size
is varied keeping all other parameter settings fixed. In this
control experiment, all objective functions converge while the

TABLE I
CONTROL EXPERIMENTS

CEx Instance γm M τ cr mr T
1: 100 630 30 0.9 0.05 5
2: 500 630 30 0.9 0.05 5

1 3: 1000 630 30 0.9 0.05 5
4: 2000 630 30 0.9 0.05 5
5: 3500 630 30 0.9 0.05 5
6: 5000 630 30 0.9 0.05 5
7: 500 153 30 0.9 0.05 5

2 8: 500 311 30 0.9 0.05 5
9: 500 630 30 0.9 0.05 5
10: 500 1275 30 0.9 0.05 5
11: 500 630 1 0.9 0.05 5

3 12: 500 630 15 0.9 0.05 5
13: 500 630 30 0.9 0.05 5
14: 500 630 60 0.9 0.05 5
15: 500 630 30 0.1 0.05 5
16: 500 630 30 0.3 0.05 5

4 17: 500 630 30 0.5 0.05 5
18: 500 630 30 0.7 0.05 5
19: 500 630 30 0.9 0.05 5
20: 500 630 30 0.9 0.01 5
21: 500 630 30 0.9 0.05 5

5 22: 500 630 30 0.9 0.1 5
23: 500 630 30 0.9 0.2 5
24: 500 630 30 0.9 0.05 1
25: 500 630 30 0.9 0.05 5

6 26: 500 630 30 0.9 0.05 10
27: 500 630 30 0.9 0.05 20
28: 500 630 30 0.9 0.05 30

population size increases. This behavior changes when the
population size increase more than around 630 population
size since the objective functions start increasing. This is due
to the fact that a very large population size may force the
evolutionary algorithm to reach high quality solutions fast and
then get trapped into local optima.

Figure 8 summarizes the results of CEx3 that investigates
the behavior of the tournament size parameter. The results
show that all three objective functions have a preference of
a relatively high tournament size (around τ = 30) since this
provides the opportunity to the genetic operators to recombine
solutions of different neighborhoods and therefore genotypes
with high dissimilarity. This results in better exploration in the
objective space.

In Figure 9, we examine the sensitivity of the proposed
approach with respect to the crossover rate. The results show
that the crossover rate influences differently the three objective
functions. On the one hand, the # of vehicles and the distance
objectives decrease as the crossover rate increase and they
are slightly negatively affected for very large values. On the
other hand, the balancing objective functions prefers a large
crossover rate, since it performs poorly for small values.
This is due to the fact that the balancing objective requires
more fine-grained global search compared to the two other
objectives.

Furthermore, the mutation rate that is varied in control
experiment CEx5 of Figure 10 shows that all three objective
functions prefer small variations on the evolved solutions and
less randomness. This is due to the fact that small mutation
rates (around 0.05) perform better compared to large values
since on the one hand they vary the existing solutions for
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Fig. 6. Control Experiment 1: Convergence of objective functions while varying the # of generations parameter γm.
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Fig. 7. Control Experiment 2: Convergence of objective functions while varying the population size M .
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Fig. 8. Control Experiment 3: Convergence of objective functions while varying the tournament size τ .



11

0.1 0.3 0.5 0.7 0.9
14

14.5

15

15.5

16

16.5

17

17.5

 crossover rate

# 
of

 v
eh

ic
le

s
CEx4:Convergence varying crossover rate

0.1 0.3 0.5 0.7 0.9
1200

1220

1240

1260

1280

1300

1320

1340

1360

1380

1400

 crossover rate
D

is
ta

nc
e

CEx4:Convergence varying crossover rate

0.1 0.3 0.5 0.7 0.9
12

14

16

18

20

22

24

 crossover rate

B
al

an
ci

ng

CEx4:Convergence varying crossover rate

Fig. 9. Control Experiment 4: Convergence of objective functions while varying the crossover rate cr .
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Fig. 10. Control Experiment 5: Convergence of objective functions while varying the mutation rate mr .
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Fig. 11. Control Experiment 6: Convergence of objective functions while varying the neighborhood size T .
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escaping from local optima, but on the other hand, they do
not modify the existing solutions much for deteriorating their
fitness.

Finally, in Figure 11, control experiment CEx6 shows the
sensitivity of the proposed approach with respect to the neigh-
borhood size. The results show that this parameter influences
differently the three objective functions. That is, the # of
vehicles and balancing objective prefer a small neighborhood
size, where the distance objective prefers a relatively large
neighborhood size. Having said that, note that the largest
neighborhood value examined in CEx6 provide adequate re-
sults for all three objective functions. We believe that this
behavior is due to the fact that the neighborhood size directly
affects both the convergence and the diversity of the MOEA/D,
since the largest the T is, the more subproblems will have the
same high quality solution in the internal population (recall the
neighborhood size calculation in Section IV for more details).
In complex and multi-dimensional optimization problems this
may provide the opportunity for the genetic operators and the
local search heuristics to search high quality solutions more
frequently and therefore increase the possibility of finding
better and close to optimum solutions.

Experimental Series 2 - MOEA/D-aLS vs. MOEA/D:
Figure 12 shows that the MOEA/D-aLS improves the per-

formance of the conventional MOEA/D in terms of both
convergence and diversity on a subset of the Solomon test
instances (C101, C201, R101, R201, RC101 and RC201). In
particular, the MOEA/D-aLS obtained a PF that dominates
the non-dominated solutions obtained by the conventional
MOEA/Ds providing a better approximation towards the op-
timal point.

This is more evident in Table II that summarizes the
statistical performance of MOEA/D-aLS and MOEA/D in
terms of the Coverage (C) and the Distance from the reference
set (ID) on the entire Solomon dataset test instances. The
results show that the non-dominated solutions obtained by the
MOEA/D-aLS dominate the non-dominated solutions obtained
by MOEA/D (C-metric) and performs better in terms of ID
in 55 and 54 out of total 56 test instances, respectively.
That is, the proposed MOEA/D approach with the adaptive
local search heuristic outperforms the conventional MOEA/D
in more than 98% of the test instances in both quality and
diversity. In particular, the solutions of the PF obtained by
MOEA/D-aLS for classes C and RC dominate more than 87%
(average of C(M-aLS,M) within each class of instances) of
those obtained by the conventional MOEA/D. When the same
figure is calculated for the class R, the average drops to around
80%, which is still considered to be substantial.

Experimental Series 3 - MOEA/D-aLS vs. MOEA/D-rLS:
Figure 13 shows that the performance of MOEA/D-aLS is

better than MOEA/D-rLS in terms of both convergence and
diversity on a subset of the Solomon dataset (C101, C201,
R101, R201, RC101 and RC201). In particular, the MOEA/D-
aLS obtained a PF that dominates most of the non-dominated
solutions obtained by the other MOEA/Ds providing a better
approximation towards the nadir point as well.

Again, this is more evident in Table III that summarizes

TABLE II
PROPOSED MOEA/D WITH ADAPTIVE LS (M-ALS) COMPARED TO
CONVENTIONAL MOEA/D (M) IN TERMS OF C AND ID METRICS.

Test Inst. C(M-aLS,M) C(M,M-aLS) ID(M-aLS) ID(M)
C101: 0.9254 0.0352 45.00 50.98
C102: 1.0000 0.0000 16.1869 70.5637
C103: 1.0000 0.0000 16.2652 46.0676
C104: 1.0000 0.0000 22.1395 33.2264
C105: 0.6747 0.0000 4.5422 153.5722
C106: 1.0000 0.0000 8.5140 87.5886
C107: 0.9806 0.0000 15.8914 76.7894
C108: 1.0000 0.0000 9.8942 57.9962
C109: 0.9677 0.0000 6.0180 48.6797
C201: 0.200 0.010 13.70 33.60
C202: 0.9472 0.0474 10.5454 45.0907
C203: 1.0000 0.0000 42.8598 45.6517
C204: 1.0000 0.0000 18.5364 28.3809
C205: 0.4533 0.4603 3.0346 32.0000
C206: 0.8806 0.0000 7.1499 28.7793
C207: 0.7917 0.0169 12.3011 19.6839
C208: 0.9992 0.0000 3.7775 39.9049
R101: 0.600 0.01 2.60 14.80
R102: 1.0000 0.0000 9.7864 29.8021
R103: 1.0000 0.0000 8.6037 26.4186
R104: 0.8936 0.0000 8.7431 112.5842
R105: 0.9172 0.0000 8.9812 28.5395
R106: 0.3846 0.2782 10.9755 18.9079
R107: 0.9964 0.0000 5.6054 40.5698
R108: 0.8312 0.0000 4.0837 36.3509
R109: 0.9970 0.0000 5.8439 27.6830
R110: 0.9038 0.0000 8.3456 29.8997
R111: 0.9983 0.0000 2.8367 26.5533
R112: 0.8709 0.0000 3.3246 274.5008
R201: 0.300 0.050 2.000 17.60
R202: 0.7015 0.1696 25.2719 67.9228
R203: 0.4488 0.3071 37.3635 28.1987
R204: 0.9803 0.0000 5.7384 23.6597
R205: 0.9749 0.0000 4.2222 11.0538
R206: 0.8407 0.0000 21.4840 36.3410
R207: 0.9570 0.0000 13.6464 44.2890
R208: 0.0000 0.3101 34.2739 32.0445
R209: 0.9019 0.0000 3.7543 49.1394
R210: 0.9782 0.0000 12.3150 35.6985
R211: 0.7738 0.0000 4.2728 53.6483

RC101: 0.1000 0.0000 42.80 55.60
RC102: 0.6154 0.0000 10.3781 41.7276
RC103: 0.9829 0.0000 5.4576 26.2972
RC104: 1.0000 0.0000 4.4443 573.2388
RC105: 0.9976 0.0000 10.8924 64.3919
RC106: 1.0000 0.0000 6.2760 57.5871
RC107: 0.8347 0.0000 6.7537 118.6446
RC108: 0.9960 0.0000 7.5085 93.0992
RC201: 0.820 0.0000 18.60 33.500
RC202: 1.0000 0.0000 23.6881 67.7323
RC203: 0.9107 0.0000 17.6818 65.8201
RC204: 0.8367 0.0000 11.5361 62.8168
RC205: 1.0000 0.0000 21.6881 82.6331
RC206: 1.0000 0.0000 15.7154 86.9275
RC207: 0.9217 0.0000 17.7751 88.0324
RC208: 1.0000 0.0000 6.8093 100.2798

the performance of MOEA/D-aLS and MOEA/D in terms of
the Coverage (C) and the Distance from the reference set
(ID) in all 56 Solomon test instances. The results show that
the non-dominated solutions obtained by the MOEA/D-aLS
dominate most of the non-dominated solutions obtained by
MOEA/D-rLS and that our proposed approach performs better
in terms of ID. In particular, the MOEA/D-aLS outperforms
MOEA/D-rLS in 48 out of 56 test instances, i.e., it provides



13

10 15 20 25 30
500

1000

1500

2000

2500

3000

3500

# of vehicles

D
is

ta
nc

e 
C

os
t

C101

 

 

0 1000 2000 3000 4000
0

10

20

30

40

50

Distance Cost

B
al

an
ci

ng

C101

 

 

10 15 20 25 30
0

10

20

30

40

50

# of vehicles

B
al

an
ci

ng

C101

 

 

10
20

30 0 2000 4000

0

10

20

30

40

50

Distance Cost# of Vehicles

B
al

an
ci

ng

M
M−aLS

M
M−aLS

M
M−aLS

(a) C101

7 8 9 10
800

1000

1200

1400

1600

1800

2000

2200

# of vehicles

D
is

ta
nc

e 
C

os
t

C201

 

 

500 1000 1500 2000 2500
0

20

40

60

80

100

120

140

Distance Cost

B
al

an
ci

ng

C201

 

 

7 8 9 10
0

20

40

60

80

100

120

140

# of vehicles

B
al

an
ci

ng

C201

 

 

6
8

10 0 1000 2000 3000

0

50

100

150

Distance Cost# of Vehicles

B
al

an
ci

ng

M
M−aLS

M
M−aLS

M
M−aLS

(b) C201

22 24 26 28 30
1600

1800

2000

2200

2400

2600

# of vehicles

D
is

ta
nc

e 
C

os
t

R101

 

 

1500 2000 2500 3000
0

10

20

30

40

50

Distance Cost

B
al

an
ci

ng

R101

 

 

22 24 26 28 30
0

10

20

30

40

50

# of vehicles

B
al

an
ci

ng

R101

 

 

20
25

30 1500 2000 2500 3000

0

10

20

30

40

50

Distance Cost# of Vehicles

B
al

an
ci

ng

M
M−aLS

M
M−aLS

M
M−aLS

(c) R101

8 10 12 14 16
1500

2000

2500

3000

# of vehicles

D
is

ta
nc

e 
C

os
t

R201

 

 

1500 2000 2500 3000
0

20

40

60

80

100

Distance Cost

B
al

an
ci

ng

R201

 

 

8 10 12 14 16
0

20

40

60

80

100

# of vehicles

B
al

an
ci

ng

R201

 

 

0
10

20 1500 2000 2500 3000

0

20

40

60

80

100

Distance Cost# of Vehicles

B
al

an
ci

ng

M
M−aLS

M
M−aLS

M
M−aLS

(d) R201

15 20 25 30
1800

2000

2200

2400

2600

2800

3000

3200

3400

# of vehicles

D
is

ta
nc

e 
C

os
t

RC101

 

 

1500 2000 2500 3000 3500
5

10

15

20

25

30

Distance Cost

B
al

an
ci

ng

RC101

 

 

15 20 25 30
5

10

15

20

25

30

# of vehicles

B
al

an
ci

ng

RC101

 

 

10
20

30 1000 2000 3000 4000

5

10

15

20

25

30

Distance Cost# of Vehicles

B
al

an
ci

ng

M
M−aLS

M
M−aLS

M
M−aLS

(e) RC101

8 10 12 14 16
1500

2000

2500

3000

3500

# of vehicles

D
is

ta
nc

e 
C

os
t

RC201

 

 

1500 2000 2500 3000 3500
0

20

40

60

80

100

120

Distance Cost

B
al

an
ci

ng

RC201

 

 

8 10 12 14 16
0

20

40

60

80

100

120

# of vehicles

B
al

an
ci

ng

RC201

 

 

0
10

20 1000 2000 3000 4000

0

20

40

60

80

100

120

Distance Cost# of Vehicles

B
al

an
ci

ng

M
M−aLS

M
M−aLS

M
M−aLS

(f) RC201

Fig. 12. Comparison between the proposed MOEA/D with adaptive Local Search (MOEA/D-aLS) and the conventional MOEA/D.
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Fig. 13. Comparison between the proposed MOEA/D with the adaptive LS (MOEA/D-aLS) and MOEA/D with random selection of LS (MOEA/D-rLS).
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TABLE III
PROPOSED MOEA/D WITH ADAPTIVE LS (M-ALS) COMPARED TO

MOEA/D WITH RANDOM LS (M-RLS) BASED ON C AND ID METRICS.

Test Inst. C(M-aLS, C(M-rLS, ID(M-aLS) ID(M-rLS)
M-rLS) M-aLS)

C101: 0.5700 0.5100 45.00 45.00
C102: 0.8108 0.1338 16.1870 25.1422
C103: 1.0000 0.0000 16.2653 18.3169
C104: 0.9123 0.0000 22.1395 15.9686
C105: 1.0000 0.0000 4.5502 53.5151
C106: 0.3711 0.0494 8.5128 15.0741
C107: 0.8581 0.0549 15.9056 8.2695
C108: 0.7467 0.0000 9.8949 14.3187
C109: 0.7984 0.1367 6.0180 7.7708
C201: 0.6600 0.4500 13.700 14.870
C202: 0.9667 0.0128 10.5454 13.0121
C203: 0.9793 0.0000 42.8598 37.8997
C204: 0.8981 0.0000 18.5364 14.9857
C205: 0.9906 0.0323 4.8392 12.4235
C206: 0.9083 0.0000 7.1499 28.7335
C207: 0.8565 0.1501 12.8931 12.6655
C208: 0.9984 0.0028 3.7777 10.7057
R101: 0.600 0.200 2.60 31.70
R102: 0.7600 0.1151 9.7868 15.9861
R103: 0.6747 0.0000 8.6037 17.4263
R104: 1.0000 0.0000 8.7496 10.3383
R105: 0.7219 0.0571 8.9839 17.8700
R106: 0.5210 0.3028 10.9833 5.9599
R107: 0.9730 0.0000 5.6055 10.4212
R108: 0.9675 0.0758 4.0837 7.9049
R109: 0.9970 0.0000 5.9754 11.0515
R110: 0.3782 0.4484 12.3672 4.9977
R111: 0.9983 0.0000 2.8384 6.8581
R112: 1.0000 0.0000 4.3903 5.3078
R201: 0.600 0.201 2.020 2.200
R202: 0.0149 0.9852 26.7705 8.1937
R203: 0.3701 0.3711 31.3426 20.5700
R204: 1.0000 0.0000 5.7384 31.3253
R205: 0.9749 0.0000 4.2222 11.0538
R206: 0.0000 0.8431 24.6603 7.9243
R207: 0.9606 0.0000 13.6476 36.2269
R208: 0.0000 0.7341 47.1448 3.2491
R209: 0.0011 0.5000 5.1973 19.0129
R210: 0.0000 0.9814 16.7154 20.1256
R211: 0.4178 0.6110 5.0982 4.1596

RC101: 0.500 0.430 42.80 26.60
RC102: 0.6709 0.0000 10.3796 19.5948
RC103: 0.2171 0.6597 5.9040 9.6797
RC104: 0.9788 0.0000 4.4449 8.9320
RC105: 0.9976 0.0000 10.8924 16.8726
RC106: 1.0000 0.0000 6.2760 6.2853
RC107: 0.9597 0.0000 6.7537 9.3652
RC108: 0.7557 0.0141 7.5085 6.6495
RC201: 0.1003 0.0000 18.60 37.30
RC202: 0.5517 0.1033 24.6459 17.9281
RC203: 0.0000 0.8213 18.0369 19.3742
RC204: 0.0000 1.0000 15.9901 10.7663
RC205: 0.2429 0.2947 21.6885 34.5763
RC206: 0.0411 0.0000 18.8320 7.9089
RC207: 0.9181 0.0000 17.7751 11.8165
RC208: 1.0000 0.0000 6.9002 8.9560

a higher quality PF in around 85% of the VRP instances.
The proposed MOEA/D-aLS approach performs worst mainly
when there is more randomness in the distribution of the
customers. For example, the MOEA/D-rLS approach provides
non-dominated solutions with higher quality than the proposed
MOEA/D-aLS in the following test instances: R110, R202,
R206, R211, RC103, RC203, RC204 and RC206. On average,
MOEA/D-aLS dominate around 85% of the non-dominated
solutions obtained by MOEA/D in class C. This improvement
is reduced to 60% and 56% on average for classes R and RC,
respectively (and even further to 40% and 36%, when we only
consider subclasses R2 and RC2, respectively). This is due to
the fact that the adaptive selection of particular local search
heuristics may worsen the global search of the MOEA/D
approach and therefore search the multi-dimensional objective
space less adequately. This fact can be further supported from
the performance of the two approaches with respect to the ID
metric, where the MOEA/D-aLS approach performs better in
just around 70% of the entire Solomon dataset.

Another important observation that can be drawn from both
Experimental Series 2 and 3 is that there is some variability on
the percentage of the improvement provided by the proposed
MOEA/D-aLS compared to the MOEA/D-rLS approach. This
provides some insights that the proposed MOEA/D with
adaptive local search heuristics approach should not only take
into consideration the preference of each subproblem (i.e.,
objective functions) when applying certain problem-specific
heuristics for locally optimizing existing solutions, but also
other parameters related to the test instances such as the
distribution of the customers and the size of the time windows.

Finally, Table IV shows the best solutions obtained for each
objective function by each MOEA/D variant for all 56 test
instances of the Solomon dataset. For every test instance, the
best solution found for each objective is shown in bold. These
results show that, in general, the MOEA/D-aLS outperforms
the other two MOEA/D variants. In this experiment, out of the
56 test instances, the results obtained by MOEA/D-aLS are:

• [at least as good / the best] with respect to the min.
number of vehicles V in [87.5%/46.4%] of the cases,
respectively,

• the best with respect to the min. distance cost D in 66.1%
of the cases, and

• [at least as good / the best] with respect to the min. balanc-
ing offset B in [55.4%/39.3%] of the cases, respectively.

The hybrid MOEA/Ds seem to clearly outperform the con-
ventional MOEA/D, and as already observed, in previous
experiments (Experimental Series 3, Table III), MOEA/D-
rLS only seems to match the performance of our proposed
method in some cases where there is more randomness in
the distribution of the customers, and in particular in the
subclasses R2 and RC2 of the Solomon dataset.

An example of the best solution in terms of number of
vehicles obtained by MOEA/D-aLS is illustrated in Figure 14.
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TABLE IV
MOEA/D-ALS COMPARED WITH CONVENTIONAL MOEA/D AND

MOEA/D-RLS IN TERMS OF BEST SOLUTIONS OBJECTIVE-WISE
(V = NO. OF VEHICLES, D = DISTANCE COST, B = BALANCING).

Test
Inst.

MOEA/D-aLS MOEA/D-rLS MOEA/D

V D B V D B V D B
C101: 10.0 828.9 7.2 11.0 860.2 6.9 14.0 1116.0 7.4
C102: 11.0 994.0 5.7 12.0 1159.9 5.7 14.0 1351.6 9.3
C103: 10.0 1148.3 2.5 12.0 1343.2 2.5 13.0 1295.3 4.6
C104: 10.0 1237.0 0.8 10.0 1324.9 4.3 11.0 1260.0 1.7
C105: 11.0 956.4 8.3 12.0 1028.9 5.6 16.0 1469.8 7.5
C106: 12.0 1029.4 6.4 12.0 1037.4 4.9 15.0 1333.2 4.6
C107: 10.0 889.3 9.4 11.0 991.4 3.6 13.0 1360.6 5.4
C108: 10.0 947.8 3.0 11.0 1110.5 2.8 12.0 1127.8 5.7
C109: 10.0 992.9 2.2 10.0 1074.9 2.5 12.0 1267.5 2.5
C201: 7.0 954.0 1.5 8.0 917.0 2.5 7.0 1085.0 6.8
C202: 5.0 838.3 0.5 6.0 949.9 0.9 7.0 1149.3 0.7
C203: 5.0 945.1 0.3 6.0 1188.1 0.5 6.0 1184.6 0.5
C204: 4.0 1095.1 0.1 5.0 1159.9 0.2 5.0 1129.3 0.2
C205: 6.0 854.8 0.5 5.0 787.1 0.8 5.0 886.8 1.3
C206: 4.0 763.6 0.1 6.0 977.7 0.5 5.0 958.1 0.4
C207: 4.0 858.5 0.3 4.0 846.6 0.3 5.0 928.0 0.3
C208: 4.0 711.9 0.3 4.0 785.3 0.2 5.0 942.6 0.3
R101: 22.0 1789.0 8.0 22.0 1874.0 8.4 22.0 1848.0 8.2
R102: 19.0 1603.3 3.9 19.0 1623.1 3.6 20.0 1661.8 6.6
R103: 15.0 1391.6 2.0 16.0 1436.8 3.9 17.0 1521.3 4.1
R104: 12.0 1216.3 1.9 13.0 1223.9 1.4 15.0 1702.6 11.2
R105: 17.0 1556.8 3.5 17.0 1606.8 3.0 19.0 1591.8 4.3
R106: 16.0 1437.4 3.6 16.0 1484.9 1.4 15.0 1477.2 5.1
R107: 13.0 1268.4 1.6 14.0 1295.5 1.6 14.0 1461.1 4.3
R108: 11.0 1085.4 1.3 11.0 1144.7 1.7 12.0 1336.4 2.6
R109: 14.0 1362.9 2.7 15.0 1359.1 2.4 15.0 1451.6 3.8
R110: 13.0 1273.9 1.5 13.0 1214.2 1.9 14.0 1370.9 4.2
R111: 13.0 1267.3 3.1 14.0 1311.4 2.0 13.0 1414.0 2.5
R112: 11.0 1199.8 1.7 11.0 1173.3 1.2 14.0 1579.8 10.8
R201: 9.0 1538.0 5.0 9.0 1555.0 5.0 9.0 1540.0 6.0
R202: 7.0 1368.1 1.0 7.0 1341.1 0.8 7.0 1433.2 0.7
R203: 5.0 1258.6 0.2 5.0 1294.4 0.6 5.0 1182.7 0.2
R204: 4.0 1024.2 0.2 5.0 1131.0 0.2 4.0 1099.2 0.3
R205: 5.0 1231.5 0.6 5.0 1276.6 0.4 5.0 1276.6 0.4
R206: 5.0 1250.3 0.1 4.0 1209.2 0.2 5.0 1302.7 0.7
R207: 3.0 1120.3 0.3 4.0 1143.2 0.1 4.0 1242.1 0.3
R208: 3.0 1095.9 0.2 3.0 889.3 0.1 3.0 1103.0 0.1
R209: 4.0 1167.3 0.2 4.0 1119.7 0.2 5.0 1351.6 0.5
R210: 5.0 1274.3 0.3 4.0 1189.1 0.2 6.0 1276.3 0.4
R211: 4.0 934.8 0.2 4.0 902.1 0.2 4.0 1181.4 0.1
RC101: 17.0 1879.0 6.4 18.0 1899.0 8.0 19.0 1960.0 6.4
RC102: 15.0 1651.7 3.5 17.0 1747.3 3.3 16.0 1869.8 6.2
RC103: 13.0 1515.1 1.7 13.0 1503.2 2.4 14.0 1563.4 5.2
RC104: 12.0 1331.4 0.9 12.0 1370.4 0.7 16.0 2173.9 17.9
RC105: 17.0 1727.3 4.6 19.0 1871.9 5.2 20.0 2042.2 9.6
RC106: 14.0 1528.9 2.5 14.0 1554.3 2.8 18.0 1873.3 12.1
RC107: 13.0 1438.2 2.6 14.0 1507.1 2.8 17.0 1997.7 11.7
RC108: 13.0 1363.1 1.5 13.0 1390.8 1.9 15.0 1820.7 10.4
RC201: 9.0 1535.0 2.0 9.0 1726.0 6.1 9.0 1792.0 7.6
RC202: 7.0 1564.7 1.3 9.0 1553.6 1.0 8.0 1792.9 4.7
RC203: 6.0 1342.0 0.3 5.0 1334.7 0.5 7.0 1687.4 3.6
RC204: 4.0 1263.1 0.3 3.0 1181.0 0.1 5.0 1374.7 0.3
RC205: 8.0 1576.7 0.9 7.0 1670.8 1.0 9.0 1969.5 2.8
RC206: 6.0 1530.9 0.5 7.0 1445.9 0.3 7.0 1909.9 3.7
RC207: 4.0 1281.7 0.2 5.0 1365.6 0.2 7.0 1757.4 5.1
RC208: 3.0 1117.4 0.3 4.0 1113.9 0.1 6.0 1557.9 0.9
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Fig. 14. Routes corresponding to best solution for C101 using MOEA/D-aLS

VII. CONCLUSIONS AND FUTURE WORK

The Tri-Objective Capacitated Vehicle Routing Problem
with Balanced Routes and Time Windows is proposed and
tackled with a Multi-Objective Evolutionary Algorithm based
on Decomposition (MOEA/D) hybridized with local search
(LS) heuristics. The MOEAD-aLS decomposes the proposed
MOP into a set of scalar subproblems which are solved
simultaneously using at each generation multiple LS heuris-
tics adaptively selected based on objective preferences and
instant requirements. We evaluate our proposition on the entire
Solomon dataset that is composed of 56 benchmark test
instances. The results show that the MOEA/D-aLS clearly
improves the performance of the traditional MOEA/D in
almost all cases and in most cases of the MOEA/D hybridized
with randomly selected LS heuristics.

Directions for future work include the investigation of the
possibility of improving various components of the Evolu-
tionary Algorithm as well as of incorporating learning for
the selection of a local search approach to further improve
the performance of the MOEA/D. Furthermore, relaxing our
tri-objective optimization problem and applying the proposed
approach on an existing two-objective optimization, so as to
evaluate its performance compared to the best-known solu-
tions, is also a future direction. Finally, we plan to apply our
hybrid MOEA/D with adaptive LS heuristic approach on other
benchmark problems.

REFERENCES

[1] A. Goel and V. Gruhn, “A general vehicle routing problem,” European
Journal of Operational Research, vol. 191, no. 3, pp. 650 – 660, 2008.

[2] G. Laporte, “Fifty years of vehicle routing,” Transportation Science,
2009.

[3] C. Prins, “A simple and effective evolutionary algorithm for the vehicle
routing problem,” Computers & Operations Research, vol. 31, pp. 1985–
2002, 2004.



17

[4] T.-R. Lee and J.-H. Ueng, “A study of vehicle routing problems
with load-balancing,” International Journal of Physical Distribution &
Logistics Management, vol. 29, no. 10, pp. 646–657, 1999.

[5] M. M. Solomon, “Algorithms for the vehicle routing problem with time
windows,” Transportation Science, vol. 29, no. 2, pp. 156–166, 1995.

[6] J. K. Lenstra and A. H. G. Rinnooy Kan, “Complexity of vehicle routing
and scheduling problems,” Networks, vol. 11, no. 2, pp. 221–227, 1981.

[7] C. R. Reeves, “A genetic algorithm for flowshop sequencing,” Special
issue on genetic algorithms in Computers and Operations Research,
vol. 22, no. 1, pp. 5–13, 1995.

[8] J. Chen and S. Chen, “Optimization of vehicle routing problem with
load balancing and time windows in distribution,” in Wireless Commu-
nications, Networking and Mobile Computing, 2008. WiCOM ’08. 4th
International Co, 2008.

[9] B. Ombuki, B. J.Ross, and F. Hanshar, “Multi-objective genetic al-
gorithms for vehicle routing problem with time windows,” Applied
Intelligence, vol. 24, pp. 17–30, February 2006.

[10] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms.
Wiley & Sons, 2002.

[11] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, and Q. Zhang,
“Multiobjective evolutionary algorithms: A survey of the state of the
art,” Swarm and Evolutionary Computation, Elsevier, vol. 1, no. 1, pp.
32–49, 2011.

[12] A. Konstantinidis, H. Haralambous, A. Agapitos, and H. Papadopou-
los, “A gp-moea/d approach for modelling total electron content over
cyprus,” CoRR, vol. abs/1111.5720, 2011.

[13] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[14] H. Ishibuchi, T. Yoshida, and T. Murata, “Balance between genetic
search and local search in memetic algorithms for multiobjective per-
mutation flowshop scheduling,” IEEE Transactions on Evolutionary
Computation, vol. 7, no. 2, pp. 204–223, 2003.

[15] N. Jozefowiez, F. Semet, and E.-G. Talbi, “Multi-objective vehicle
routing problems.” European Journal of Operational Research, pp. 293–
309, 2008.

[16] ——, “An evolutionary algorithm for the vehicle routing problem with
route balancing.” European Journal of Operational Research, pp. 761–
769, 2009.

[17] K. C. Tan, Y. H. Chew, and L. H. Lee, “A hybrid multiobjective
evolutionary algorithm for solving vehicle routing problem with time
windows,” Comput. Optim. Appl., vol. 34, pp. 115–151, May 2006.

[18] M. J. Geiger, “A computational study of genetic crossover operators for
multi-objective vehicle routing problem with soft time windows,” CoRR,
2008.

[19] K. Tan, C. Cheong, and C. Goh, “Solving multiobjective vehicle
routing problem with stochastic demand via evolutionary computation,”
European Journal of Operational Research, vol. 177, no. 2, pp. 813–839,
2007.

[20] K. Ghoseiri and S. F. Ghannadpour, “Multi-objective vehicle routing
problem with time windows using goal programming and genetic
algorithm.” Appl. Soft Comput., pp. 1096–1107, 2010.

[21] Q. Zhang and H. Li, “MOEA/D: A multi-objective evolutionary al-
gorithm based on decomposition,” IEEE Transactions on Evolutionary
Computation, vol. 11, no. 6, pp. 712–731, 2007.

[22] A. Konstantinidis, S. Pericleous, and C. Charalambous, “MOEA/D for a
tri-objective vehicle routing problem,” in Artificial Intelligence Applica-
tions and Innovations, ser. IFIP Advances in Info. and Communication
Technology. Springer Boston, 2013, vol. 412, pp. 131–140.

[23] K. C. Tan, Y. H. Chew, and L. H. Lee, “A hybrid multi-objective
evolutionary algorithm for solving truck and trailer vehicle routing
problems.” European Journal of Operational Research, pp. 855–885,
2006.

[24] D. Chitty and M. Hernandez, “A hybrid ant colony optimisation
technique for dynamic vehicle routing,” in Genetic and Evolutionary
Computation GECCO 2004, ser. Lecture Notes in Computer Science,
K. Deb, Ed. Springer Berlin / Heidelberg, 2004, vol. 3102, pp. 48–59.

[25] S.-C. Hong and Y.-B. Park, “A heuristic for bi-objective vehicle routing
with time window constraints,” International Journal of Production
Economics, vol. 62, no. 3, pp. 249 – 258, 1999.

[26] B. Barn and M. Schaerer, “A multiobjective ant colony system for
vehicle routing problem with time windows.” in Applied Informatics’03,
2003, pp. 97–102.

[27] K. G. Zografos and K. N. Androutsopoulos, “A heuristic algorithm
for solving hazardous materials distribution problems,” European
Journal Of Operational Research, vol. 152, no. 2, pp. 507–519,

2004. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S0377221703000419

[28] P. Chand, B. S. P. Mishra, and S. Dehuri, “A multi objective genetic
algorithm for solving vehicle routing problem,” International Journal of
Information Technology and Knowledge Management, vol. 2, no. 2, pp.
503–506, July-December 2010.

[29] M. N. Kritikos and G. Ioannou, “The balanced cargo vehicle routing
problem with time windows,” International Journal of Production Eco-
nomics, vol. 123, no. 1, pp. 42–51, 2010.

[30] C. Hjorring, The Vehicle Routing Problem and Local Search Metaheuris-
tics. Chapter 2, PhD thesis,Department of Engineering Science, The
University of Auckland, 1995.

[31] E. Angelelli and M. Speranza, “The periodic vehicle routing problem
with intermediate facilities,” European Journal of Operational Research,
Elsevier, vol. 137, pp. 233–247, 2002.

[32] S. Baptista, R. Oliveira, and E. Zquete, “A period vehicle routing case
study,” European Journal of Operational Research, Elsevier, vol. 139,
pp. 220–229, 2002.

[33] G. Righini, “Approximation algorithms for the vehicle routing problem
with pick-up and delivery,” Note del Polo - Ricerca 33, Polo Didattico
e di Ricerca di Crema, Universita degli Studi di Milano, Luglio, 2000.

[34] A. Wade and S. Salhi, An ant system algorithm for the mixed vehicle
routing problem with backhauls. Norwell, MA, USA: Kluwer Academic
Publishers, 2004, pp. 699–719.

[35] L. C. Yeun, W. R. Ismail, K. Omar, and M. Zirour, “Vehicle routing
problem: models and solutions,” Journal of Quality Measurement and
Analysis, vol. 4, no. 1, pp. 205–218, 2008.

[36] T. Murata and R. Itai, “Multi-objective vehicle routing problems using
twofold emo algorithms to enhance solution similarity on non-dominated
solutions,” in In Evolutionary Multi-Criterion Optimization. Springer,
2005, pp. 885–896.

[37] A. Garcia-Najera and J. A. Bullinaria, “An improved multi-objective
evolutionary algorithm for the vehicle routing problem with time win-
dows,” Comput. Oper. Res., vol. 38, pp. 287–300, January 2011.

[38] A. Konstantinidis, K. Yang, Q. Zhang, and D. Zeinalipour-Yazti,
“A multi-objective evolutionary algorithm for the deployment and
power assignment problem in wireless sensor networks,” New Network
Paradigms, Elsevier Computer Networks, vol. 54, pp. 960–976, 2010.

[39] D. E. Goldberg and L. R, “Alleles, loci, and the traveling salesman
problem,” in Proceedings of the First International Conference on
Genetic Algorithms and Their Applications, J. J. Grefenstette, Ed.
Lawrence Erlbaum Associates, Publishers, 1985.

[40] A. Konstantinidis and K. Yang, “Multi-objective energy-efficient dense
deployment in wireless sensor networks using a hybrid problem-specific
MOEA/D,” Applied Soft Computing, vol. 11, no. 6, pp. 4117–4134,
2011.

[41] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a
comparative case study and the strength pareto approach.” IEEE Trans.
Evolutionary Computation, pp. 257–271, 1999.

[42] P. Czyzak and A. Jaszkiewicz, “Pareto simulated annealing - a meta-
heuristic technique for multiple-objective combinatorial optimization,”
Journal of Multi-Criteria Decision Analysis, vol. 7, no. 1, pp. 34–47,
1998.


